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SUMMARY 
A numerical model is described for the prediction of turbulent continuum equations for two-phase gasliquid 
flows in bubble columns. The mathematical formulation is based on the solution of each phase. The two-phase 
model incorporates interfacial models of momentum transfer to account for the effects of virtual mass, lift. drag 
and pressure discontinuities at the gasliquid interface. Turbulence is represented by means of a two-equation k- 
E model modified to account for bubble-induced turbulence production. The numerical discretization is based on 
a staggered finite-volume approach, and the coupled equations are solved in a segregated manner using the IPSA 
method. The model is implemented generally in the multipurpose PHOENICS computer code, although the 
present appllications are restricted to twodimensional flows. The model is applied to simulate two bubble 
column geometries and the predictions are compared with the measured circulation patterns and void fraction 
distributions. 
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1. INTRODUCTION 

Bubble columns are commonly used in the biochemical and petrochemical industries for a number o f  
important industrial processes. A bubble column comprises a vessel filled with liquid, usually with a 
sparger ring located at or near the base of the column for dispersing the gas. In some configurations a 
draft tube is used to direct recirculation of the liquid and to influence the bubble motion. The need for 
more reliable and improved designs has led in recent years to the development of a number of 
mathematical models. The different types of model have been summarized by Svendsen and co- 
workersIv2 and Celik and Wang3 The most complex models are those using computational fluid 
dynamics (CFD), by which is meant models based on numerical finite volume techniques. CFD 
models of bubble columns have been developed and applied by Svendsen and co-workers,Iv2 Huang4 
and Petersen.’ All these models are based on a two-fluid modelling approach in which phasic 
continuum conservation equations are used in conjunction with appropriate closure models for the 
interfacial transfer processes and turbulent transport. 
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Efficient and reliable numerical techniquesG9 are now available for the numerical solution of the 
coupled two-fluid equations and so the incorporation of appropriate closure relations is the key issue 
for successful CFD simulations. The interfacial modelling for momentum transfer involves the 
provision of closure models to account for the effects of drag, lift, virtual mass and interfacial 
pressure. The turbulence modelling requires the introduction of a suitable turbulence model for 
closure of the turbulent Reynolds stresses. 

The two-fluid model described in this paper is based largely on the Huang- Petersen model, but 
differs from it in a number of important respects. The closure models for the interfacial forces and 
Reynolds stresses are those used by Huang4 and Petersen,' but the present model takes into account 
the additional production of turbulent kinetic energy due to bubbleliquid interactions. Furthermore, 
the Huang-Petersen model represents the turbulent dispersion of bubbles through a dispersion force 
in the phasic momentum equations," whereas the present model employs a turbulent diffision term 
in the phasic continuity equations. This practice is shared by the model of Svendsen and co- 

but it is much older, having been used in the previous decade by Spalding's group.' I* '*  

The other major difference between the two models is that the Huang-Petersen simulations were 
performed using a two-dimensional version of the Harlow- Amsden solution whereas the 
present study uses the interphase slip algorithm (IPSA) of Spalding."' The present two- phase model 
has been implemented generally in the multipurpose PHOENICS CFD code. Furthermore, the input 
files specifying the calculations have been deposited in the PHOENICS library of two-phase flow 
examples. The model is therefore now available for immediate activation in fbture work, as well as 
for other workers to repeat the calculations described in this paper. 

The two-fluid model is validated by application to the bubble column geometries studied 
experimentally by HillsI4 and Svendsen and co-workers.'*2 This exercise is complemented by 
additional validation studies against one-dimensional analytical solutions and the data of Seriwaza et 
al." for two-phase bubbly flow in pipes. 

The remainder of this paper is divided into three sections, respectively dealing with the 
mathematical model, the presentation and discussion of results and the main conclusions of this 
study. 

2. MATHEMATICAL MODEL 

2.1. Continuity equations 

The phasic continuity equations take the form 

where pk is the density of phase k, r k  is the volume fraction of phase k, u k  is the velocity vector of 
phase k and D is the phase diffusion coefficient. The subscript k refers to the continuous phase 'c' 
(liquid) or the dispersed phase 'd' (gas). 

The phase diffusion term represents the turbulent flux associated with correlations between 
fluctuating velocity and volume fraction. The flux is modelled via a gradient diffusion approximation 
with the diffusion coefficient D given by 

D = Vt /gr ,  (2) 

where vt is the turbulent kinematic eddy viscosity and or is the turbulent Schmidt number for volume 
fractions, which, unless stated otherwise, is assigned a value of unity. The turbulent viscosity is 
computed from a modified k-e turbulence model as described later. 
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The mean global continuity equation is 

r d + r , =  1, (3 ) 
where rd  and r, are the volume fractions of the dispersed and continuous phases respectively. 

2.2, Momentum equations 

The phasic momentum equations are given by 

a(Pkrkuk)lat + ' @ k r k u k u k )  = -rkvpk + v ' [rk(Tv.k + rt ,k)l  

+ 'kpkg + ( p k i  - pk)vrk -k M d . k  + Mm,k -k (4) 
-k v ' (pkDUkVr,), 

where P,  is the static pressure of phase k, Ph is the static pressure of phase k at the interface, g is the 
gravitational acceleration, Tv,k and Tt,k are the viscous and turbulent stress tensors for phase k 
respectively and &,k, MdVk and are the interfacial forces per unit volume due to virtual mass 
effects, drag forces and lift forces respectively. 

The stress tensors are given in incompressible form by 

Tv.k = 2pkVlDk7 Tt .k  = 2 p k v t D k *  ( 5 )  

(6)  

where v1 is the kinematic laminar viscosity of the continuous phase and Dk is the deformation tensor, 

Dk = 0*5[Vuk + (Vuk)'], 

where the superscript ' + ' denotes that the transpose of the dyadic VU,  is taken. 

2.3. Interfacial drag forces 

The interfacial drag forces per unit volume are given by 

Md,d = F(Uc - Ud)? Md,, = -F(U, - ud), (7) 

F = o ~ ~ ~ c ~ ~ , r ~ r , ~ s , / D ~ ,  (8) 

where Ud and U,  are the phase velocity vectors and F is the interphase drag Coefficient, 

where c d  is a dimensionless drag coefficient, &, is the bubble diameter and Vs(= J(U, - U,)) is the 
magnitude of the slip velocity vector U,, i.e. the total relative mean velocity vector between the two 
phases. 

The dimensionless drag coefficient c d  varies as a function of bubble Reynolds number 

Re = VsD,,/vI (9) 

We = P,v&/B, (10) 

and Weber number 

where Q is the surface tension, which is given a value of 0.072 N m-' for air-water systems. The 
following which are suitable for air bubbles rising in unfiltered water, are 
employed: 

cd = 16/Re for region 1 with Re < 0.49, 

c d  = 20.68 
cd = 6-3/Re0'385 for region 2B with Re >> 100. 

(1 1) 

(12) 
(13) 

for region 2 with 0.49 < Re < 100, 
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However, if Re>> 100 and We > 8, 

c d  = 813, for region 5; (14) 

otherwise, if Re>> 100 and Re > 2065.1/W$.6, 
c d  = We13 for region 4. 

The region numbers correspond to Figure 1 in the paper of Kuo and Wallis16 and are discussed in 
detail by Wallis.” For spherical bubbles, c d  is a function of Re only, whereas when bubbles become 
very distorted, Cd is a function of We only. 

2.4. Virtual mass forces 

The significance of the virtual mass term in the momentum equations is that it represents the force 
required to accelerate the apparent mass of the surrounding continuous phase in the immediate 
vicinity of the dispersed phase. These effects can be neglected if pd/pc >> 1. For solid particles and 
liquid droplets in gases these effects are small, but they are important in the motion of gas bubbles 
through liquids. 

The 
present study employs the Drew-Lahey formulation19 

Formulations of the virtual mass terms have been proposed by a number of 

M,,C = pcCvmrdavm~ M m , d  - - p C  - c m d m 9  r a  (16) 

(17) 

where C, is the virtual mass coefficient and a, is the virtual mass acceleration vector, 

= a(ud - Uc)/at + Ud ’ vud + uc vuc. 
The coefficient C ,  describes the volume of displaced fluid that contributes to the effective mass of 
the dispersed phase. In general this parameter is likely to be a function of rd, but it is often taken as 
constant. For example, C, takes a value of 0.5 for spherical bubbles and different values for other 
shapes. ‘Og20 

In the present work, C, is calculated from4,5*21 

where C,, = 0.5 and (a, b) denotes that the minimum of a and b is taken. Provision is also made for 
constant values of C, to be used, as well as taking C, = Cmarc. 22 

2.5. Interfacial l i j  forces 

Interfacial lift forces are particularly important for the prediction of phase separation and phase 
distribution phenomena. As an example, the lateral phase distribution for fully developed bubbly flow 
through a circular duct shows that bubbles accumulate near the walls for upward flow and near the 
centre of the duct for downward flow.10~”~20~23 

The modelling of these lift forces has been considered by a large number of workefs.4*5*10s19*20*2~26 
Following these researchers, the following expressions are used for the interfacial lift forces per unit 
volume: 

Ml.c = clPcrd(ud - uc) ( v  x Uc), Ml,d = -clPcrd(ud - uc) ( v  x Uch (19) 

where Cl is the interfacial lift coefficient. There is much uncertainty in the literature concerning the 
value of CI. For example, Lahey and co-workers”” report values in the range 0.01-0.5. 

In the present work the lift coefficient C, is computed 

Ci = C,,(1*0-2.78(0*2, ~ d ) ) ,  (20) 
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where Cla = C,, = 0.5. The present implementation also allows for constant values of Cl, as well as 
for values to be computed from C, = Clare, as proposed by Watanabe et a1.22 

Following other  worker^,"*^*^ negative values of Cl are employed in the present bubble column 
simulations. The justification for using negative lift coefficients has been discussed at great length by 
Svendsen et aL2 and so this discussion will not be reiterated here. Suffice to say that Svendsen et al. 
claim that there is experimental evidence on the negative Magnus effect to support this practice, 
which also leads to successful predictions. 

2.6. Interj6acial pressure forces 

The form of the pressure terms in the momentum equations (4) is taken from References 27 and 28. 
The usual practice in two-phase flow calculations is to assume that there are no pressure 
differences, I*’ 

Pk = Pki = P, (21) 

so that the pressure terms M,,k(’ -rkvPk + (Pk, - Pk)vrk) in the momentum equations reduce to 
the familiar expression 

h z p , k  = -rkvP. (22) 

This assumption is adequate in applications which do not involve acoustic effects or bubble 
expansion or contraction.” 

The original pressure terms allow for the possibility of momentum transfer due to pressure 
discontinuities between the bulk phases and the interface. These effects may be included in the 
momentum equations by one of two alternative formulations of the interfacial pressure terms. The 
first is the one described by Huang: Lahey et al.” and Petersen,’ which will be referred to as the 
Lahey formulation. The second is the one described by St~hmil le?~ and which will be 
referred to as the Stuhmiller formulation. 

The Lahey formulation employs the pressure relationships 

where [ is the mean curvature and Cp is an empirical pressure coefficient defined below. Equation 
(24) represents a Bernoulli effect in the continuous phase flow field whereby the pressure on the 
liquid side of the interface is less than the bulk liquid pressure due to the velocity increase associated 
with the deflection of the flow around the dispersed bubbles. If the surface tension is presumed 
uniform and equations (23H25) are substituted into the momentum equation (4), the following 
pressure terms appear in the phasic momentum equations: 

~ p , ,  = -rcVP, + c,p, C V r d ,  (26) 

$.d = -rdvpc + rdv(cpPc v,’). 
The Stuhmiller formulation employs relations (24) and (25) above, together with 
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which implies pd,  - Pd = Pci - Pc rather than Pdi - Pd = 0 as used in the Lahey formulation. If the 
surface tension is presumed uniform and equations (24), (25) and (28) are substituted into the 
momentum equation (4), the following pressure terms appear in the momentum equations: 

M , , ~  = -rcVPc + CppcViVrd, (29) 

The present implementation makes provision for using both these formulations, although only the 
Lahey formulation is used in the present applications. 

Lahey et al." report values of C, in the range 0.25-1 .O, whereas Huang4 and Petersen' take 

and Antal et ~ 1 . ~ '  take C, = C,,rc, with CPa = 0.25 in both cases. 

constant values as well as the proposal of Antal et aL3' 
The present study uses equation (31), although the model implementation also makes provision for 

2.7. Turbulence modelling 

The turbulence is assumed to be a property of the continuous phase and so the turbulent kinematic 
viscosity vt is shared by both phases. The turbulent dynamic viscosity of each phase is then calculated 
by multiplying vt by the phasic density. This treatment is in accordance with the neglect of internal 
flow inside the dispersed phase. 

The turbulent viscosity is determined from the solution of modelled transport equations for the 
turbulent kinetic energy k and its dissipation rate E.  For two-phase high-Reynolds-number turbulent 
flows the following modified form of the k-E model is employed: 

a(pcrck)/at + v ' (pcrcUck) = v ' [ P C ~ C ( ~ I  f vt/ck)Vkl+pcrc(Pk - c)+v ' [p~(~ t / e , )kV~c l+~cPb ,  (32) 
q ( P c r c f ) / a t  + v .  ( p c r c u c ( )  = v '[Pcrc(vl + v l / O O V c l  + rccIfpbc/k + (p~~cc/~) (CI ,Pk - C&c) 

+ v - [ P c ( v , / ~ , ) ~ v ~ c l .  ( 3 3 )  

v, = C,kZ/f, (34) 

where Pk is the volumetric production rate of k by shear forces, 

Pk = 2v1DC : VU,, (35) 
and P b  is the production rate of k due to the drag work that the bubbles do as they move through the 
liquid, 

Pb = cbm, - u,, (36)  

with c b  an empirical constant denoting the fraction of bubble-induced turbulence going into the 
large-scale turbulence of the liquid phase. 

The bubble-induced turbulence production terms, which have been used by several other 
 worker^,^*^"^^ attempt to allow for the additional production and dissipation of turbulence due to the 
presence of the bubbles. In general, large bubbles may be expected to enhance turbulence, whereas 
small bubbles may be expected to suppress turbulence. The present work uses values of C, in the 
range 0.014.05, which is comparable with the value of 0.02 used for two-phase bubbly flow in 
conduits.32 

The values used for the other model constants are those recommended by Launder and S ~ a l d i n g , ~ ~  
namely (Tk= 1.0, c, = 1.314, C,, = 0.09, C,, = 1.44 and C,, = 1.92. 
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2.8. Boundary and initial conditions 

In the present work the flow can be bounded by an inflow boundary, an outflow boundary, a solid 
wall and a symmetry plane. The inflow conditions, and the initial conditions in transient simulations, 
depend on the flow considered and therefore their definition for each problem will be deferred until 
Section 3. 

Although laminar transport has been allowed for in the k+ model, it is not applicable near walls 
where the turbulence Reynolds number is low. In these regions, equilibrium wall functions34 are used 
in boundary conditions which are specified at a grid point located in the fully turbulent regime. At this 
point the logarithmic law of the wall prevails and the turbulence is assumed to be in local 
equilibrium. This practice leads to the calculation of the carrier phase wall shear stress in terms of the 
dimensionless wall distance y+(= U*6/v,)  and logarithmic law constants K ( = 0.41) and E ( = 8.6). 
The wall shear stress is taken as zero for the dispersed phase. The boundary conditions for k and E are 
specified at the near-wall grid point in terms of the friction velocity U* and the wall distance 6. 

At symmetry planes, such as the axis of a pipe, the normal gradients for all dependent variables are 
zero, so that a zero-flux condition is applied along such boundaries. At outflow boundaries the static 
pressure is specified and held constant, so that the volume fractions and mass outflows of the selected 
phases result as part of the overall solution. 

2.9. Solution of equations 

The foregoing mathematical model has been incorporated for general use into the commercial CFD 
code PHOENICS. The implementation is general in that it is applicable to steady or unsteady, one-, 
two- or three-dimensional turbulent or laminar flows using Cartesian, cylindrical polar or curvilinear 
co-ordinates. 

The numerical procedure used is of the fmite volume type in which the original partial differential 
equations are converted into algebraic fmite volume equations with the aid of discretization 
assumptions. For this purpose the solution domain is subdivided into a number of control volumes 
using a conventional staggered grid approach. The volume fractions, scalar variables and pressure are 
stored at the grid nodes, while the velocities are stored at staggered locations which lie between the 
pressure nodes. The control volumes for the velocities are staggered in relation to the control volumes 
for other variables. 

The finite volume equations for each variable are derived by integrating the partial differential 
equations over each control volume. Fully implicit backward differencing is employed for the 
transient terms and central differencing for the diffusion terms. The convection terms are discretized 
using hybrid differencing in which the convective terms are approximated by central differences if 
the cell face Peclet number Pe < 2 and by upwind differences if Pe > 2. At faces where the upwind 
scheme is used, physical diffusion is omitted altogether. The integration procedure results in a 
coupled set of algebraic h i t e  volume equations which express the value of a variable at a grid node 
in terms of the values at neighbouring grid points and the nodal value at the old time level. 

The finite volume equations are solved iteratively using the SIMPLEST" and IPSA algorithms of 
Spalding,'** which are embodied in the PHOENICS code for use in both parabolic and elliptic modes 
of calculation. The calculation procedure is organized in a slab-by-slab manner in which all 
dependent variables are solved at the current slab before attention moves to the next higher slab. The 
slabs are thus visited in turn, from the lowermost to the uppermost, and a complete series of slab 
visits is referred to as a sweep through the solution domain. For parabolic calculations, only one such 
sweep is required, with many iteration cycles at each slab, and no outflow boundary condition is 
required as this is an outcome of the solution. For elliptic calculations, many such sweeps are 
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conducted until convergence is attained at the current time level; in addition, the pressure equation is 
solved in a simultaneous whole-field manner at the end of each sweep. Thereafter the solution 
proceeds to the next time level where the iterative process is repeated. 

The numerical solution procedure requires appropriate relaxation of the flow variables in order to 
procure convergence. Two types of relaxation are employed, namely inertial and linear. The former is 
normally applied to the velocity variables, whereas the latter is applied to all other flow variables, as 
and when necessary. 

The convergence requirement is that for each set of finite volume equations the sum of the absolute 
residual sources over the whole solution domain is less than 1 per cent of reference quantities based 
on the total inflow of the variable in question. An additional requirement is that the values of 
monitored dependent variables at a selected location do not change by more than 0.1 per cent 
between successive iteration cycles. 

3 .  APPLICATIONS 

3.1. Testing 

The correctness of the interfacial drag and virtual mass models was tested separately by reference 
to one-dimensional calculations which may be compared with analytical solutions. These 
comparisons are not given here because of space limitations, but the interested reader is referred 
to Reference 35 for the detailed comparisons. 

The first test case concerned a cloud of air bubbles rising steadily through stagnant water. After a 
relatively short period of acceleration the bubbles attain a uniform terminal velocity under which the 
drag force balances the buoyancy force. The drag model was validated successfully by calculating the 
terminal rise velocity for each of the five different flow regions of the Ku+Wallis16 drag model. 

The second case considered was the acceleration of bubbles by a uniform flowing gas stream. The 
analytical solution for this case has been given by Morsi and Alexander36 and it is easily extended to 
include virtual mass effects. The test calculations employed a constant drag coefficient cd = 0.44 and 
a virtual mass coefficient C ,  = 0.5. The virtual mass model was validated successfully by comparing 
the calculated and analytical distributions of the bubble velocity. 

The final analytical case was the one-dimensional transient case documented by Hewitt et al.37 
Denser fluid initially rests above lighter fluid in a vertical tank 2 m high and then it falls down to the 
bottom under gravity whilst the lighter fluid rises to the top of the tank. Eventually, after a time period 
of about 10 s, all the dense phase rests on the bottom of the tank with the lighter phase at the top. The 
densities of the two fluids were chosen nearly equal ( p c  = 1 and pd=O*999) so as to allow 
comparisons with published analytical and numerical solutions.37 The gravitational acceleration was 
defined by g = 0.5(pd + p , ) / ( p ,  - p d )  and the virtual mass coefficient was taken as C,,rc with 
C,, = 1.0. The interfacial drag coefficient was calculated from F = 2pdrcrd. The predicted 
distributions of the dense phase volume fraction at t = 2 , 4 , 6  and 8 s were found to be in reasonable 
agreement with the analytical solutions and very similar to other numerical results.37 

3.2. Bubbly air-waterpow in a pipe 

As a precursor to bubble column flows, the problem considered is the prehction of radial phase 
distribution in turbulent bubbly air-water upflow in a pipe.” The Reynolds number based on 
superficial liquid velocity and pipe diameter D,, is 80,000. The inlet superficial gas and liquid 
velocities are j e  = 0.077 m s-’ and j l  = 1.36 m s-’. The inlet void fracton is given by jg/( jg +jl), 
which presumes no slip between the incoming phases. 
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Figure 1. Seriwaza pipe upflow: void fraction radial profiles 

The two-dimensional calculations are performed with the parabolic solution procedure on a 
cylindncal polar mesh with 30 uniformly distributed radial grid cells. The forward-marching 
integration is carried out with a forward step size Az = O.lD,, and the calculation is terminated 35 
diameters downstream of the inlet. This location corresponds to the experimental measuring station 
which lies in the region of fully developed flow. Mesh refinement tests were carried out and little 
difference was obtained in the results when using 40 radial grid cells and Az = O.OSD,. 

The calculations are carried out with C,,=O-O75, C,,=O.5, Cp,=0.25 and Cb=0.05. The 
bubble diameter is taken as 3 mm,15 while the fluid properties are taken as pl= 1000 kg m-3, 
pe= 1.23 kg m-3 and v1=10-~  m2 s-'. 

Figures 1 and 2 present the results in terms of measured and predicted radial profiles of the void 
fraction and vertical liquid velocity. The void fraction profile reveals that gas is taken away from the 
centre and towards the wall. The behaviour is due to the lift force driving the bubbles towards the 
wall in upflow. The predictions are in fairly good agreement with the data, although the near-wall 
peak is not reproduced by the model. It can also be seen that the model predictions of the liquid 
upflow velocity agree very well with the measurements. It should be mentioned that the present 
results are very similar to those reported by Lahe#' with a somewhat different two-fluid model. In 
subsequent work, Lahey and Lopez de Bertodano3* predicted the near-wall void peaking by 
introducing a somewhat geometry-specific near-wall lubrication-like force. 

3.3. Hills bubble column 

The case considered is the bubble column of Hills,I4 which provides detailed measurements of 
voidage distribution and liquid velocity at a position 0.6 m above the base of the column. The column 
has an internal diameter of 0.138 m and a height of 1.37 m. The column is initially completely filled 
with water and air enters at the base of the column through a sieve plate. Eventually the flow attains 
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Figure 2. Seriwaza pipe upflow: vertical liquid velocity radial profiles 

-0.37 m / s  

Figure 3. Hills bubble column: liquid phase velocity vectors (steady state solution; transient simulation) 
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Figure 4. Hills bubble column: gas phase velocity vectors (steady state solution; transient simulation) 

steady state conditions with gross circulation of the liquid in the column. The liquid is carried by the 
gas up the centre of the column and the liquid then turns through 180" at the top and descends down 
the outer wall. 

Transient, two-dimensional axisymmetric calculations are performed on a cylindrical polar mesh 
with five different mesh sizes: 10 by 20, 15 by 20,20 by 20,20 by 30 and 20 radial gnd cells by 40 
vertical grid cells. The results indicated that a 20 by 30 mesh size gives a good compromise between 
the desired numerical accuracy and computational time. Increasing the number of radial mesh points 
from 15 to 20 had but a small effect on the results, as did increasing the number of vertical grid points 
from 30 to 40. 

The calculation is started from a column filled with stagnant liquid and the liquid is then allowed to 
leave at the top of the column through a single fixed-pressure cell adjacent to the wall. The air is 
injected uniformly at the base of the column with a velocity of 0.038 m S-I, resulting in a gas volume 
inflow rate of 2.046 m3 h-I . The air is allowed to leave at the top of the column via a fixed-pressure 
boundary located across the whole radial extent of the column. The bubble diameter is taken as 
7.61 mm,39 while the fluid properties are taken as PI=  1000 kg m-3, pe= 1.23 kg m-3 and 
v I =  10-6 m2 s-l. 

Transient calculations are performed with CI, = -0.5, C,, = 0.5, C, = 0.25 and C, = 0.01. A 
time step of 0.05 s is employed with a maximum of 100 sweeps per time step. Steady state conditions 
are reached after about 20 s. Although strictly the problem needs to be run as a transient so as to 
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Figure 5. Hills bubble column: void fraction contours (steady 5 - t e  solution; transient simulation) 
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specify the total liquid volume, a steady state calculations is also performed using the same boundary 
conditions as used in the transient simulation. The motivation for this calculation is computational 
economy. 
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Transient simulations. Steady state results are presented and discussed in this subsection and 
compared where possible with the measurements of Hills.14 Figures 3-5 show liquid phase velocity 
vectors, gas phase velocity vectors and void fraction contours respectively. Figures 6 and 7 present 
the predicted and measured radial profiles of the void fraction and liquid phase vertical velocity at the 
measuring plane respectively. 

The predicted flow patterns shown in Figures 3 and 4 for the two phases agree with those observed 
experimentally by Hills.I4 The clockwise liquid circulation is a consequence of the density difference 
produced by the non-uniform gas hold-up shown in Figure 5 .  The voidage predictions show low 
values at the walls and high values at the flow axis. This is in agreement with the experimental 
observations. It is important to note that in view of the uniform inflow of gas, the inclusion of the 
interfacial lift force is essential for producing radial phase distribution and hence liquid circulation. 

The predicted gas hold-up of 0-15 for the entire column is in good agreement with the average 
value of 0.14 indicated by the meas~ernents. '~ The comparisons between the void fraction profiles 
shown in Figure 6 confirm the quality of the predictions, with the model producing very good 
agreement with the data. 

Figure 7 shows that the vertical liquid velocity is underestimated by the model. This discrepancy is 
also evident in the numerical results of P e t e ~ e n , ~  who reported even lower values of the liquid 
velocity, e.g. about 0.1 m s-l at the flow axis. 
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Figure 8. Hills bubble column: 
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liquid phase velocity vectors (ste :ady state : iimulation) 

Steady simulations. The results of the steady state calculation are presented in Figures 8 and 9 in 
terms of the liquid phase velocity vectors and void fraction contours respectively. These figures show 
the striking result that converged solutions are obtained which exhibit opposite trends to those 
observed in the experiments and transient calculations. The results show that the liquid circulation is 
anticlockwise and that the void fraction is higher near the wall than at the flow axis. The predicted gas 
hold-up for the entire column agrees with the data and that predicted by the transient calculation. 

These results may be explained by the fact that the interfacial lift model permits two numerical 
solutions, only one of which is physical. This was confmned by (a) repeating the steady state 
calculation using the steady state transient solution as an initial starting field and (b) performing a 
transient calculation using the solution obtained from the steady state calculation as initial condition. 
Both these calculations maintained the initial solution fields, thereby confirming the existence of two 
solutions to the finite volume equations. 

It is suggested here that the transient calculation produces the physical solution because this 
calculation includes transient virtual mass terms, whereas the steady state calculation does not. These 
forces may be expected to stabilize the system in the early stages of the transient, offering increased 
inertia to the bubble motion, thereby acting to resist any tendency for the lift forces to induce an 
anticlockwise liquid circulation. 
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Figure 9. Hills bubble column: void fraction contours (steady state simulation) 

3.4. Trondheim bubble column 

The bubble column geometry is that described by Svendsen and co- workers.Is2 The column is 
4.25 m high with a diameter of 0.288 m. The media used are air and water, which enter uniformly 
and vertically at the bottom of the column. The bubble column operates at atmospheric pressure and 
both phases are allowed to leave at the top of the column. The experimental data reveal a gross liquid 
circulation pattern in which liquid upflow occurs at the flow axis and liquid downflow at the column 
walls. The inlet superficial velocities for the gas and liquid arej,=O.O8 m s-' a n d j  =0.01 m s-I, 
so that the volume inflow rates of gas and water are 18-76 and 2.345 m3 h-' respectively. Svendsen 
and co- workers measured radial distributions of the void fraction, vertical liquid velocity and vertical 
velocity fluctuations at a station located 1.6 m above the inlet plane. 

Two-dimensional axisymmetric calculations are performed on a cylindrical polar mesh with four 
different mesh sizes: 15 by 30, 25 by 30, 30 by 30 and 25 radial grid cells by 40 vertical grid cells. 
The computations indicated that a 25 by 30 mesh size produced results of sufficient numerical 
accuracy. The use of 30 rather than 25 radial mesh points produced little change in the results, as did 
increasing the number of vertical grid points from 30 to 40. 

Following Torvik and Svendsen,' the inlet void fraction is taken as 0.2 and the gas and liquid inlet 
velocities are set to 0.4 and 0.0125 m s-l respectively. A fixed-pressure boundary condition is 
applied to both continuity equations at the outlet boundary. The bubble diameter is taken as 10 mm, 
while the fluid properties are taken as pI = 1000 kg m-3, pg = 1.19 kg m-3 and V I  = m2 s-I. 
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Figure 10 Trondheim bubble column liquid phase velocity vcctors 

Numerical simulations are made with CI = -0.5. 0, = 1.5, C,,, = 0.5, C,,, = 0.25 and Cb = 0.05. 
The use of a variable l i f t  coefficient proved unsatisfactory for this application, as the predicted 
volume fraction profile at the measuring station was too flat. Evidently, more research is needed to 
predict both bubble column geometries with the same set of model coefficients. 

Figures 10-13 show liquid phase velocity vectors, gas phase velocity vectors, void fraction 
contours and contours of the turbulent kinetic energy respectively. The computed and measured 
radial distributions of the void fraction, vertical liquid velocity and vertical velocity fluctuations at 
z =  1.6 m are presented in Figures 14-16 respectively. 

The velocity vectors in Figures 10 and 1 1  show fairly similar global recirculation patterns for the 
gas and liquid phases. The gas phase recirculation size is obviously much narrower, being restricted 
to a thin layer close to the wall. The radial lift force acts to drive the bubbles against the liquid phase 
vertical velocity gradients and so the void fraction contours depicted in Figure 12 show larger void 
fractions at the column centre than at the wall. This result is in agreement with experiment, as may be 
seen on inspection of Figure 14. 

The comparisons between calculation and experiment made in Figures 14 and 15 show that the 
computations predict broadly the correct trends. The void fraction distributions displayed in Figure 
14 reveal that the model produces good overall agreement with data. The calculation of total gas 
hold-up for the column is 0.28, but the experimenters did not report a value for comparison. Figure 15 
reveals that the model produces very good agreement with the velocity data. 
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Figure 1 1 .  Trondheim bubble column: gas phase velocity vectors 

Figure 16 shows that the predicted values of the vertical velocity fluctuations are lower than the 
measured values, a discrepancy that was also reported by Torvik and Svendsen' with a similar two- 
fluid model. The contours of turbulent kinetic energy presented in Figure 13 reflect the distribution 
observed in Figure 16, except that turbulence energy maxima are formed at the extremities of the 
column. 

4. CONCLUDING REMARKS 

A mathematical model has been described for the simulation of turbulent, two- phase gasliquid 
flows in bubble columns. Turbulence was represented by means of a modified two-equation model 
which accounts for bubble-induced turbulence production. The turbulent dispersion of bubbles was 
modelled by a gradient diffusion term in the phasic continuity equations. The interfacial modelling 
comprised momentum transfer terms to account for the effects of drag, virtual mass, l i f t  and 
interfacial pressure. The drag model takes into account the various bubble shape regimes encountered 
in two-phase bubbly flows. 

The model has been validated by application to two laboratory bubble column ge~met r i e s . ' . ~ . ' ~  It 
has been shown that the model can predict the observed trends in phase distribution and relative 
velocity and the numerical solutions were found to be in encouraging agreement with most of the 
experimental data. Although future application to other bubble columns is feasible, the present study 
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Figure 12. Trondheirn bubble column: void fraction contours 

has demonstrated that the values of the various model coefficients are by no means universal. 
Therefore the state of the physical modelling is such that much more research is needed before the 
model can be used as a reliable design tool for industrial bubble columns. 

There are a number of ways in which the present two-fluid model can be improved to increase its 
capabilities and to provide more accurate numerical simulations. These include the introduction of 
closure models for the pressure-void correlations which appear in the statistically averaged 
momentum equations, the introduction of interphase heat and mass transfer, the investigation of flow 
regimes other than bubbly flow, the introduction of gas phase compressibility and, most importantly, 
the implementation of a model to account for variations in local bubble size due to fragmentation and 
coalescence. 
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